The nonabelian simple groups $G$, $G<10\sp{6}$―minimal generating pairs

نویسندگان
چکیده

منابع مشابه

The Nonabelian Simple Groups G , \ G \ < 106 — Minimal Generating Pairs

Minimal (k, m, n) generating pairs and their associated presentations are defined for all nonabelian simple groups G, IGI < 10 , excepting the family PSL(2, q). A complete set of minimal (2, m, n) generating permutations of minimal degree is tabulated for these G. The set is complete in the sense that any minimal generating pair for G will satisfy the same presentation as exactly one of the lis...

متن کامل

Isoclinic Classification of Some Pairs $(G,G\')$ of $p$-Groups

‎‎The equivalence relation isoclinism partitions the class of all pairs of groups‎ ‎into families‎. ‎In this paper‎, ‎a complete classification of the set of all pairs $(G,G')$ is established‏‎,‎ whenever‎ $G$ is a $p$-group of order at most $p^5‎‏$‎ and ‎$p$ is a prime number greater than 3. Moreover‎, ‎the classification of pairs $(H,H')$ for extra special $p$-groups $H$ is also given.

متن کامل

A classification of nonabelian simple 3-BCI-groups

For a finite group G and a subset S ⊆ G (possibly, S contains the identity of G), the bi-Cayley graph BCay(G, S) of G with respect to S is the graph with vertex set G × {0, 1} and with edge set {(x, 0), (sx, 1)|x ∈ G, s ∈ S}. A bi-Cayley graph BCay(G, S) is called a BCI-graph if, for any bi-Cayley graph BCay(G, T ), whenever BCay(G, S) ∼= BCay(G, T ) we have T = gS , for some g ∈ G, α ∈ Aut(G)....

متن کامل

CLASSIFYING FUZZY SUBGROUPS OF FINITE NONABELIAN GROUPS

In this paper a rst step in classifying the fuzzy subgroups of a nite nonabelian group is made. We develop a general method to count the number of distinct fuzzy subgroups of such groups. Explicit formulas are obtained in the particular case of dihedral groups.

متن کامل

On invertible generating pairs of fundamental groups of graph manifolds

We study invertible generating pairs of fundamental groups of graph manifolds, that is, pairs of elements (g, h) for which the map g → g −1 , h → h −1 extends to an automorphism. We show in particular that a graph manifold is of Heegaard genus 2 if and only if its fundamental group has an invertible generating pair.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1979

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1979-0521296-9